

HIDDEN PV IN WHITE COLOR

INTENSE GREEN 100 W/M²

CHARACTERISTICS OF THE GLASS

Peak Power (Wp/m²)
Visible light transmittance

110 Wp per m² 0%

ENVIRONMENTAL BENEFITS BASEL

Renewable energy generated Kg of CO₂ avoided Kilometres driven in an electric car Light points fed 2.034 KWh per m² 61,5 Kg per m² 11.700 Km per m² 4 per m²/day

ECONOMIC BENEFITS BASEL*

Value of the renewable energy generated Return on investment Internal rate of return (IRR) Payback time Building's value increase** 567 CHF per m² 12,7 times 32,33% 4 years 280 CHF per m²

PV FAÇADE / BALCONY

CRYSTALLINE SILICON TECHNOLOGY

DATA CONSIDERED FOR CALCULATIONS

Orientation:

ENERGY LOSSES PER ORIENTATION

-25%

-54%

-25%

- * The prices considered are merely indicative and may vary depending on the installed glass surface. The data provided in this feasibility study in no case involves a contractual obligation.
- ** According to the US Department of Energy & Environment a sustainable building will obtain an increase of value between 10 and 20 USD for every USD generated by renewable energy.

HIDDEN PV IN WHITE COLOR

CHARACTERISTICS OF THE GLASS

Peak Power (Wp/m²) Visible light transmittance 110 Wp per m² 0%

ENVIRONMENTAL BENEFITS BASEL

Renewable energy generated Kg of CO₂ avoided Kilometres driven in an electric car Light points fed 3.103 KWh per m² 93 Kg per m² 17.843 Km per m² 6,1 per m²/day

ECONOMIC BENEFITS BASEL*

Value of the renewable energy generated
Return on investment
Internal rate of return (IRR)
Payback time
Building's value increase**

865 CHF per m²
19,38 times
48,82%
3 years
427 CHF per m²

HIDDEN PV ROOF SWITZERLAND

CRYSTALLINE SILICON TECHNOLOGY

DATA CONSIDERED FOR CALCULATIONS

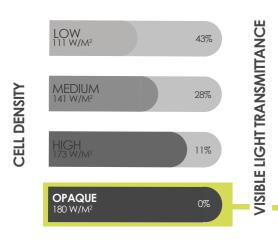
Orientation:

ENERGY LOSSES PER ORIENTATION

-17%

-17%

-36%



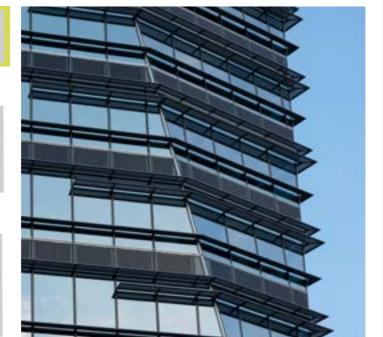
- * The prices considered are merely indicative and may vary depending on the installed glass surface. The data provided in this feasibility study in no case involves a contractual obligation.
- ** According to the US Department of Energy & Environment a sustainable building will obtain an increase of value between 10 and 20 USD for every USD generated by renewable energy.

OPAQUE PV GLASS

CHARACTERISTICS OF THE GLASS

Peak Power (Wp/m²) Visible light transmittance 180 Wp per m² 0%

ENVIRONMENTAL BENEFITS BASEL


Renewable energy generated Kg of CO₂ avoided Kilometres driven in an electric car Light points fed

3.329 KWh per m² 99,90 Kg per m² 19.146 Km per m² 6,54 per m²/day

ECONOMIC BENEFITS BASEL*

Value of the renewable energy generated Return on investment Internal rate of return (IRR) Payback time Building's value increase**

928 CHF per m² 6,54 times 16,97% 7 years 459 CHF per m²

PV DOUBLE SKIN / SPANDREL

SWITZERLAND

CRYSTALLINE SILICON TECHNOLOGY

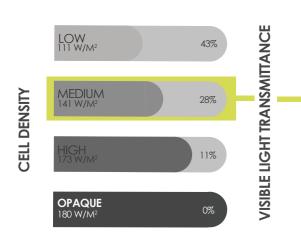
DATA CONSIDERED FOR CALCULATIONS

ENERGY LOSSES PER ORIENTATION

-25%

-25%

-54%



- * The prices considered are merely indicative and may vary depending on the installed glass surface. The data provided in this feasibility study in no case involves a contractual obligation.
- ** According to the US Department of Energy & Environment a sustainable building will obtain an increase of value between 10 and 20 USD for every USD generated by renewable energy.

MEDIUM CELL DENSITY PV GLASS

CHARACTERISTICS OF THE GLASS

Peak Power (Wp/m²)
Visible light transmittance

141 Wp per m² 28%

ENVIRONMENTAL BENEFITS BASEL

Renewable energy generated Kg of CO₂ avoided Kilometres driven in an electric car Light points fed 2.608 KWh per m² 78,25 Kg per m² 14.998 Km per m² 5,13 per m²/day

ECONOMIC BENEFITS BASEL*

Value of the renewable energy generated Return on investment Internal rate of return (IRR) Payback time Building's value increase** 727 CHF per m²
4 times
10,42 %
10 years
359 CHF per m²

PV CURTAIN WALL

SWITZERLAND

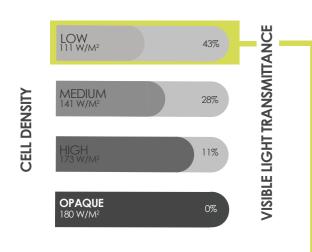
CRYSTALLINE SILICON TECHNOLOGY

DATA CONSIDERED FOR CALCULATIONS

ENERGY LOSSES PER ORIENTATION

-25%

-54%



- * The prices considered are merely indicative and may vary depending on the installed glass surface. The data provided in this feasibility study in no case involves a contractual obligation.
- ** According to the US Department of Energy & Environment a sustainable building will obtain an increase of value between 10 and 20 USD for every USD generated by renewable energy.

LOW CELL DENSITY PV GLASS

CHARACTERISTICS OF THE GLASS

Peak Power (Wp/m²) Visible light transmittance 111 Wp per m² 43%

ENVIRONMENTAL BENEFITS BASEL

Renewable energy generated Kg of CO₂ avoided Kilometres driven in an electric car Light points fed

2.053 KWh per m² 61,6 Kg per m² 11.807 Km per m² 4 per m²/day

ECONOMIC BENEFITS BASEL*

Value of the renewable energy generated Return on investment Internal rate of return (IRR) Payback time Building's value increase**

572 CHF per m² 3,76 times 9,67% 11 years 283 CHF per m²

PV BALUSTRADE / BALCONY **SWITZERLAND**

DATA CONSIDERED FOR CALCULATIONS

ENERGY LOSSES PER ORIENTATION

- * The prices considered are merely indicative and may vary depending on the installed glass surface. The data provided in this feasibility study in no case involves a contractual obligation.
- ** According to the US Department of Energy & Environment a sustainable building will obtain an increase of value between 10 and 20 USD for every USD generated by renewable energy.

OPAQUE PV GLASS

LOW 111 W/M² MEDIUM 141 W/M² **CELL DENSITY** OPAQUE

CHARACTERISTICS OF THE GLASS

Peak Power (Wp/m²) Visible light transmittance 140 Wp per m² 0%

ENVIRONMENTAL BENEFITS BASEL

Renewable energy generated Kg of CO₂ avoided Kilometres driven in an electric car Light points fed

3.545 KWh per m² 106 Kg per m² 20.387 Km per m² 7 per m²/day

ECONOMIC BENEFITS BASEL*

Value of the renewable energy generated Return on investment Internal rate of return (IRR) Payback time Building's value increase**

988 CHF per m² 3,85 times 9,93% 11 years 488 CHF per m²

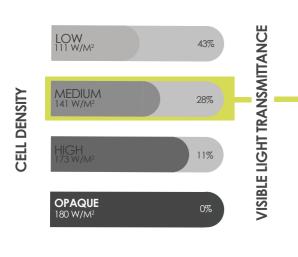
WALKABLE PV FLOOR **SWITZERLAND**

CRYSTALLINE SILICON TECHNOLOGY

DATA CONSIDERED FOR CALCULATIONS

ENERGY LOSSES PER ORIENTATION

0°


0°

- * The prices considered are merely indicative and may vary depending on the installed glass surface. The data provided in this feasibility study in no case involves a contractual obligation.
- ** According to the US Department of Energy & Environment a sustainable building will obtain an increase of value between 10 and 20 USD for every USD generated by renewable energy.

MEDIUM CELL DENSITY PV GLASS

CHARACTERISTICS OF THE GLASS

Peak Power (Wp/m²) Visible light transmittance 141 Wp per m² 28%

ENVIRONMENTAL BENEFITS BASEL

Renewable energy generated Kg of CO₂ avoided Kilometres driven in an electric car Light points fed 3.977 KWh per m² 119 Kg per m² 22.872 Km per m² 7,82 per m²/day

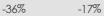
ECONOMIC BENEFITS BASEL*

Value of the renewable energy generated Return on investment Internal rate of return (IRR) Payback time Building's value increase** 1.109 CHF per m² 9 times 23,24% 5 years 548 CHF per m²

PV SKYLIGHT SWITZERLAND

CRYSTALLINE SILICON TECHNOLOGY

DATA CONSIDERED FOR CALCULATIONS


ENERGY LOSSES PER ORIENTATION

-17%

produce. Each tree absorbs an average of 10 Kg of CO2 per year.

- * The prices considered are merely indicative and may vary depending on the installed glass surface. The data provided in this feasibility study in no case involves a contractual obligation.
- ** According to the US Department of Energy & Environment a sustainable building will obtain an increase of value between 10 and 20 USD for every USD generated by renewable energy.

HIGH CELL DENSITY

CHARACTERISTICS OF THE GLASS

Peak Power (Wp/m²)
Visible light transmittance

173 Wp per m² 11%


ENVIRONMENTAL BENEFITS BASEL

Renewable energy generated Kg of CO₂ avoided Kilometres driven in an electric car Light points fed 4.381 KWh per m² 131 Kg per m² 25.193 Km per m² 8,61 per m²/day

ECONOMIC BENEFITS BASEL*

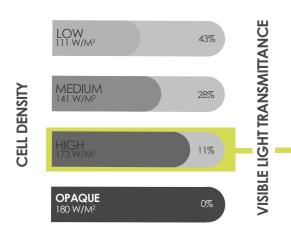
Value of the renewable energy generated Return on investment Internal rate of return (IRR) Payback time Building's value increase** 1.221 CHF per m² 9 times 22,83% 6 years 603 CHF per m²

SWITZERLAND

PV CANOPY

DATA CONSIDERED FOR CALCULATIONS


ENERGY LOSSES PER ORIENTATION



CRYSTALLINE SILICON TECHNOLOGY

- * The prices considered are merely indicative and may vary depending on the installed glass surface. The data provided in this feasibility study in no case involves a contractual obligation.
- ** According to the US Department of Energy & Environment a sustainable building will obtain an increase of value between 10 and 20 USD for every USD generated by renewable energy.

HIGH CELL DENSITY PV GLASS

CHARACTERISTICS OF THE GLASS

Peak Power (Wp/m²)
Visible light transmittance

173 Wp per m² 11%

ENVIRONMENTAL BENEFITS BASEL

Renewable energy generated Kg of CO₂ avoided Kilometres driven in an electric car Light points fed 4.880 KWh per m² 146 Kg per m² 28.063 Km per m² 9,6 per m²/day

ECONOMIC BENEFITS BASEL*

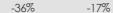
Value of the renewable energy generated Return on investment Internal rate of return (IRR) Payback time Building's value increase** 1.361 CHF per m²
9,9 times
25,34%
5 years
672 CHF per m²

PV BRISE SOLEIL

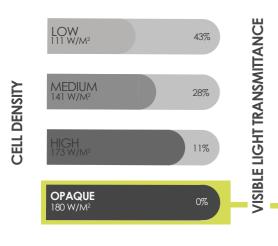
SWITZERLAND

CRYSTALLINE SILICON TECHNOLOGY

DATA CONSIDERED FOR CALCULATIONS


ENERGY LOSSES PER ORIENTATION

-17%



- * The prices considered are merely indicative and may vary depending on the installed glass surface. The data provided in this feasibility study in no case involves a contractual obligation.
- ** According to the US Department of Energy & Environment a sustainable building will obtain an increase of value between 10 and 20 USD for every USD generated by renewable energy.

OPAQUE PV GLASS

CHARACTERISTICS OF THE GLASS

Peak Power (Wp/m²)
Visible light transmittance

180 Wp per m² 0%

ENVIRONMENTAL BENEFITS BASEL

Renewable energy generated Kg of CO₂ avoided Kilometres driven in an electric car Light points fed 3.329 KWh per m² 100 Kg per m² 19.146 Km per m² 6,5 per m²/day

ECONOMIC BENEFITS BASEL*

Value of the renewable energy generated Return on investment Internal rate of return (IRR) Payback time Building's value increase** 928 CHF per m²
5,9 times
15,40%
7 years
459 CHF per m²

PV NOISE BARRIER

SWITZERLAND

CRYSTALLINE SILICON TECHNOLOGY

DATA CONSIDERED FOR CALCULATIONS

T. O


-25%

ENERGY LOSSES PER ORIENTATION

-25%

- * The prices considered are merely indicative and may vary depending on the installed glass surface. The data provided in this feasibility study in no case involves a contractual obligation.
- ** According to the US Department of Energy & Environment a sustainable building will obtain an increase of value between 10 and 20 USD for every USD generated by renewable energy.

GlobalEPD A VERIFIED ENVIRONMENTAL DECLARATION

Environmental Product Declaration

EN ISO 14025;2010 EN 15804:2012+A2:2019

AENOR

CRYSTALLINE PHOTOVOLTAIC SOLAR GLASS

G/GM07244 G/GM07211 G/GM03644 G/GM01688A

GlobalEPD Code: GlobalEPD EN15804-063

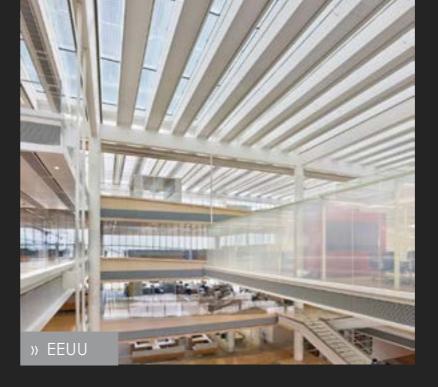
ECO PLATFORM & AENOR

ECO Platform is a European Association made up of DAP Verification Program Administrators, industrial associations, and life cycle analysis experts, which guarantees the quality and conformity of environmental declarations of construction products in accordance with ISO 14025 and EN 15084 Standards. ECO Platform represents a common pan-European framework for DAPs. The Programs commit to common quality and verification criteria, which are regularly audited.

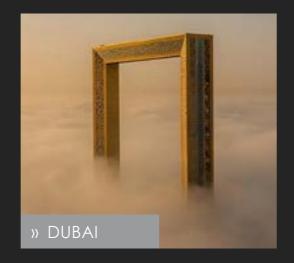
AENOR is a founding member of ECO Platform and passed audits in 2014 to issue Environmental Declarations with the ECO Platform EPD EN 15804 VERIFIED™ logo, being one of the first four European Administrators along with International EPD System (Sweden), IBU (Germany) and BAU EPD (Austria).

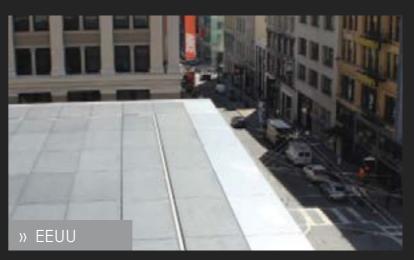
GLOBAL EPD

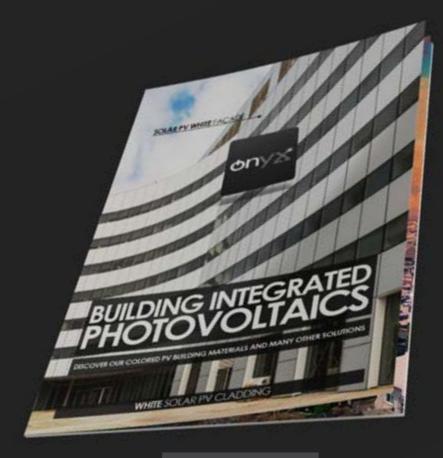
SCAN THE QR TO DOWNLOAD OUR EPD



The Environmental Product Declaration (EPD) is a certified document that provides our clients with reliable, verified, and transparent information regarding the environmental impact throughout the life cycle of a product. This information is based on a Life Cycle Analysis (LCA) study conducted in accordance with the Product Category Rules (PCR) developed by the Eco-labeling Program. In our specific case, the study has been carried out under the **Product Category** Rule for Construction Products UNE EN 15804:2012+A2.







Scan this QR code to acces our catalog.

UNLOCKING THE POWER OF PHOTOVOLTAIC GLASS:

Are you curious about the potential of photovoltaic (PV) glass for your project? Our team at Onyx Solar is here to guide you through the process and help you harness the benefits of this innovative technology.

WHAT DOES PV GLASS BRING TO YOUR PROJECT?

- ✓ Energy Generation: PV glass generates clean electricity from sunlight, reducing your reliance on traditional power sources.
- ✓ **Aesthetic Integration:** Say goodbye to bulky solar panels! PV glass blends seamlessly with architectural designs, enhancing the visual appeal of your building.
- ✓ Environmental Impact: By using PV glass, you contribute to reducing carbon emissions. Imagine the positive impact on our planet!

HOW ONYX SOLAR CAN ASSIST YOU

Our technical team offers free feasibility studies tailored to your project. Here's what we provide:

- · Product Datasheets: Detailed information about our PV glass products, including technical specifications.
- ·Shop Drawings: Visual representations to aid in your design process.
- Energy Estimates: Understand the potential energy output based on your installation.
- ·CO₂ Emissions Prevented: Quantify the environmental benefits of using PV glass.
- ·Cost Analysis: Get a clear picture of the investment required.
- $\textbf{\cdot Payback and ROI:} \ \textbf{Evaluate the financial returns over time.}$
- •Tax Credits and Incentives: Explore available incentives to make an informed decision.

FACTORY

C/ Palma de Mallorca, 8 Avila · Spain · 05194 Phone: +34 920 21 00 50 info@onyxsolar.com

OFFICE

79 Madison Avenue, Suite #231 New York · USA · 10016 Phone: +1 917 261 4783 usa@onyxsolar.com

www.onyxsolar.com

The value of the renewable energy generated is just a preliminary estimate and does not imply any kind of guarantee. Factors such as surrounding shadows, self-shades, or other external aspects have not been taken into account. These factors might lead to a reduction in energy production. In addition, other potential losses due to BOS are also excluded from these calculations. The calculation has been done using PVWATTS and PVSYST in pre-design mode.

Onyx Solar Energy S.L. makes no representations about the accuracy of these estimates and does not warrant, or guarantee, whether express or implied, that the content in the report is accurate, complete, or up to date.